- Rivas, M.A.; Proietti, C.J.; Inurrigarro, G.; Frahm, I.; Allemand, D.H.; Deza, E.G.; Ares, S.; et al. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer. Clin. Cancer Res. 2017, 23, 636–648.
- Mercogliano, M.F.; De Martino, M.; Bruni, S.; Venturutti, L.; Rivas, M.; Amasino, M.; Proietti, C.J.; Elizalde, P.V.; Schillaci, R. Abstract 1195: TNFα Induces Multiresistance to HER2-Targeted
- TNF α Induces Multiresistance to HER2-Targeted Therapies in HER2-Positive Breast Cancer. Cancer Res. 2017, 77, 1195.
- Steed, P.M.; Tansey, M.G.; Zalevsky, J.; Zhukovsky, E.A.; Desjarlais, J.R.; Szymkowski, D.E.; Abbott, C.; Carmichael, D.; Chan, C.; Cherry, L.; et al. Inactivation of TNF Signaling by Rationally Designed Dominant-Negative TNF Variants. Science 2003, 301, 1895–1898.

УДК: 618.19:616-006.6-073.43

ДИАГНОСТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ДОППЛЕРОГРАФИИ В ОЦЕНКЕ ВАСКУЛЯРИЗАЦИИ ОПУХОЛЕЙ МОЛОЧНЫХ ЖЕЛЕЗ

Пулатова И.З., Мамадалиева Я.М., Шамансурова Н.Х. Центр развития профессиональной квалификации медицинских работников

ХУЛОСА

Мақсад. Сут бези ўсмаларида қон томирлари хоссаларини аниқлашда рангли допплер хариталаш усулининг ташҳисий аҳамиятини баҳолаш.

Материаллар ва усуллар. Сут безларининг В-режими ва рангли допплер карталаш режимидаги проспектив УТТ тадкикоти 132 нафар, ёши 33 дан 71 гача бўлган аёлларда (ўртача ёш: 52±5,8) ўтказилди

Натижалар ва мухокама. Бизнинг тадқиқотимизга кўра, сут бези ўсмаларининг дифференциал ташхисида В-режим ва ЦДКнинг самарадорлиги қуйидаги кўрсаткичларни берди: сезувчанлик — 77,6%; махсуслик — 51,7%; аниқлик — 58,8%; ижобий натижанинг прогностик қиймати — 37,8%; салбий натижанинг прогностик қиймати — 86,0%.

Хулосалар. Шу тарзда, васкуляризацияни бахолаш билан бирга рангли допплер хариталаш усулининг қўлланилиши, сут бези рак ўсмаларини аниқлашда УТТ текширувининг ташхисий самарадорлигини оширади.

Калит сўзлар: кўкрак бези саратони, ултратовуш диагностикаси, допплерография.

Рак молочной железы (РМЖ) занимает лидирующее место среди всех онкологических заболеваний у женщин. Каждый год в мире фиксируется около 1,3 миллиона новых случаев, что составляет от 10 до 18 % всех злокачественных опухолей [2]. Прогноз выживаемости напрямую связан с тем, на каком этапе заболевание обнаружено: при выявлении на I стадии пятилетняя выживаемость достигает 90 %, а на II стадии – около 80 %. Поэтому одной из ключевых задач в борьбе с онкологией остаётся выявление болезни на раннем, до клинического проявления, этапе, когда вероятность полного излечения наиболее высока [1].

SUMMARY

Objective. To evaluate the diagnostic value of color Doppler imaging in assessing the vascularization features of breast tumors.

Materials and methods. A prospective ultrasound study of the breasts using grayscale and color Doppler imaging (CDI) modes was conducted on 132 women aged 33 to 71 years (mean age: 52±5.8).

Results and discussion. According to our study, the effectiveness of B-mode ultrasound combined with CDI in the differential diagnosis of breast tumors showed the following metrics: sensitivity – 77.6%; specificity – 51.7%; accuracy – 58.8%; positive predictive value – 37.8%; negative predictive value – 86.0%.

Conclusions. Thus, the use of color Doppler imaging for assessing vascularization improves the diagnostic efficiency of ultrasound in detecting malignant breast tumors.

Keywords: breast cancer, ultrasound diagnostics, dopplerography.

В дифференциальной диагностике генеза любого образования большое значение имеет анализ его васкуляризации, а если быть точнее, то микроваскуляризации.

Экспериментально было доказано, что имеется прямая взаимосвязь между степенью васкуляризации опухоли и плотностью сосудов при иммуногистохимическом анализе (ИГХ) [11]. Поэтому при оценке васкуляризации опухоли можно изучить ее неоангиогенез. Доказано, что наиболее агрессивные опухоли генерируют свою собственную сеть сосудистых каналов, причем ангиогенез и родственные ему механизмы являются для опухоли не только средствами

устранения кислородного и метаболического дефицита, но и способом усиления агрессивности и метастазирования [9].

Как только опухолевое образование достигает диаметра в 1 мм, для его дальнейшего роста необходимо формирование новых кровеносных сосудов. Эти сосуды также способствуют проникновению опухолевых клеток в системный кровоток.

В отличие от доброкачественных образований, злокачественные опухоли обладают аномальными сосудами с неравномерным диаметром и беспорядочным расположением [5]. Поэтому определение типа сосудистой сети новообразования является важным элементом диагностики рака молочной железы.

Анализу васкуляризации и количественных ее параметров в опухолях молочной железы при ультразвуковом исследовании с помощью цветового допплеровского картирования (ЦДК) было посвящено множество работ. До сих пор исследователи не достигли согласия относительно роли метода в дифференциальной диагностике злокачественного и доброкачественного образований молочной железы, не включив характеристики васкуляризации в определяющие категории.

Первым допплеровским критерием, позволившим отличать доброкачественные образования от злокачественных, стало выявление зон кровотока. По данным некоторых авторов [7], допплеровские сигналы фиксируются у 99 % злокачественных опухолей, в то время как среди доброкачественных - только у 3 %. С развитием ультразвуковой диагностики стало возможно обнаружение кровотока и в доброкачественных опухолях. Так, согласно Mehta T.S. и соавт. [6], наличие центральных (проникающих) сосудов может указывать на злокачественный характер опухоли, тогда как преимущественно периферические сосуды чаще свидетельствуют о доброкачественности. В то же время ЦДК ограничен в обнаружении медленного кровотока, так как визуализирует только сосуды диаметром не менее 100 мкм, в то время как капилляры опухолей обычно имеют диаметр 5-10 мкм [8].

Несмотря на невысокую специфичность, ЦДК продолжает активно применяться в практике ультразвуковой диагностики молочной железы.

ЦЕЛЬ ИССЛЕДОВАНИЯ

Оценить диагностическую ценность цветового допплеровского картирования при определении особенностей васкуляризации опухолей молочной железы, а также выявить допплеровские признаки, имеющие статистическую и клиническую значимость, путем их сопоставления с результатами гистологического анализа.

МАТЕРИАЛ И МЕТОДЫ

Проспективное ультразвуковое исследование молочных желез с использованием серошкального режима и режима ЦДК было проведено 132 женщинам в возрасте от 33 до 71 лет (средний возраст составил

52±5,8), у которых были жалобы на болезненные ощущения, чувство наполненности, наличие пальпируемых образований в молочных железах. Исследования проводились на ультразвуковом сканере экспертного класса Logiq S8 HD Clear (GE Healthcare, Miwaukee, WI, USA) линейным датчиком 9L-D с диапазоном частот 8-10 МГц. Все опухоли первоначально исследовались с помощью стандартной ультразвуковой диагностики в В-режиме и протоколировались по системе BI-RADS [4].

В ЦДК-режиме кровоснабжение опухолевого очага определялось по количеству зон сосудистого сигнала: различали аваскулярный, слабо васкуляризированный (гиповаскулярный) и интенсивно васкуляризированный (гиперваскулярный) типы. Также оценивалось расположение сосудистых локусов внутри образования: интранодулярный (внутренний), периферический (по краю) и смешанный типы. В результате морфологического исследования были верифицированы 36 злокачественных и 96 доброкачественных опухолей (табл.1).

При морфологическом подтверждении злокачественного характера новообразования дополнительно проводился иммуногистохимический анализ для выявления экспрессии рецепторов к эстрогену (ER), прогестерону (PR), рецептора эпидермального фактора роста человека второго типа (HER2/neu), а также уровня пролиферативной активности (Кі67, %). На основе этих данных устанавливался предполагаемый молекулярный подтип опухоли. Из 36 злокачественных образований у 31 пациентки был определён один из следующих подтипов: люминальный А, люминальный B, HER2-положительный или трижды негативный рак, причём эта классификация применялась исключительно к инвазивным карциномам. У остальных 5 женщин с диагнозами, включающими протоковые карциномы in situ, саркому, папиллярный рак и злокачественную филлоидную опухоли, молекулярная типизация не проводилась.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При проведении детальной ультразвуковой визуализации в В-режиме у 132 женщин было выявлено 96 доброкачественных образований, где средний размер составлял $1,1\pm0,8$ см (диапазон 0,4-2,9 см), и выявлялись следующие критерии: пониженная эхогенность определялась у 62 (64,6%) образований, неровность контуров — у 41 (42,7%), наличие кальцинатов визуализировалось у 13 (13,5%) образований, имели вертикальную ориентацию 10 (10,4%) узлов, акустическая тень определялась за 8 (8,3%) образованием.

В группе злокачественных опухолей (n=36) в В-режиме средний размер составлял $2,3\pm1,3$ см (диапазон 0,5-6,2 см) и были характерны следующие ультразвуковые критерии: 30 (83,8%) образований имели неровные нечёткие контуры, у 35 (96,3%) отмечалась пониженная эхогенность, 21 (58,8%) имели вертикальную ориентацию, вокруг 9 (25,7%) опре-

делялись инфильтративные изменения окружающих тканей, 19 (53,7%) образований имели акустическую тень, 16 (45,6%) — содержали кальцинаты. Причём у 24 (66,7%) образований присутствовало три и бо-

лее эхографических признака злокачественности, в 8 (22,2%) случаях — два признака, 4 (11,1%) образований имели лишь один ультразвуковой критерий.

Таблица 1

Гистологическая характеристика опухолей молочной железы
(n=132)

Диагноз	Количество	% от общего числа				
Злокачественные опухоли						
Метапластический рак	1	0,8 %				
Муцинозный рак	1	0,8 %				
Неспецифицированный рак	27	20,5 %				
Папиллярный рак	1	0,8 %				
Протоковая карцинома in situ	2	1,5 %				
Саркома	1	0,8 %				
Филлоидная опухоль (злокачественный тип)	1	0,8 %				
Доброкачественные опухоли						
Аденоз	4	3,0 %				
Внутрипротоковая папиллома	1	0,8 %				
Воспалительные изменения	1	0,8 %				
Гранулема	3	2,3 %				
Локализованный фиброаденоматоз	13	9,8 %				
Пролиферативные изменения протоков	3	2,3 %				
Склерозирующий аденоз	1	0,8 %				
Сложная киста	20	15,2 %				
Фиброаденома	37	28,0 %				
Фиброз	3	2,3 %				
Фибролипома	1	0,8 %				
Филлоидная опухоль (доброкачественный тип)	2	1,5 %				
Цистаденопапиллома	5	3,8 %				

В ходе анализа распределения сосудистых характеристик, выявленных с помощью цветового допплеровского картирования, продемонстрировал зна-

чимую корреляцию между типом васкуляризации и гистологической природой образований (табл. 2).

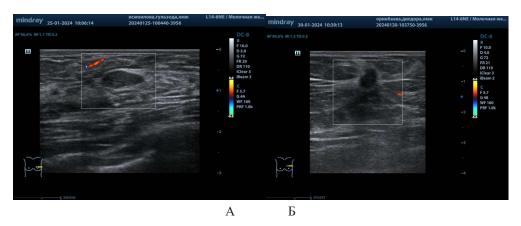


Рис. 1. Аваскулярный характер кровотока в опухоли: А - фиброаденома МЖ; Б - рак МЖ.

Так, при доброкачественных новообразованиях молочной железы с использованием цветового допплеровского картирования наиболее часто регистрировался гиповаскулярный тип кровотока – у 48 пациенток (50,0%; 95% ДИ: 42,9–56,6). Аваскулярный тип был отмечен у 34 пациенток (35,4%), а гиперваскулярный – у 14 пациенток (14,6%) (рис.1). Указанные

различия были статистически достоверны по сравнению со злокачественными образованиями ($\chi^2=59,48$; p<0,021).

В случае злокачественных опухолей гиперваскуляризация встречалась существенно чаще — у 21 пациенток (59,2%; 95% ДИ: 48,0–69,6), что в 3,9 раза превышает частоту при доброкачественных процес-

сах (14,6%; 95% ДИ: 10,7–20,5) (p<0,001). Более чем в половине случаев злокачественного процесса преобладал именно гиперваскулярный тип кровотока, что позволяет рассматривать его как важный диагностический критерий (рис.2).

Также установлено, что смешанный тип сосудистой архитектуры встречался у 50 пациенток (37,9%;

95% ДИ: 28,1–49,4) с злокачественными образованиями, что в 4,4 раза чаще, чем при доброкачественных (11 пациенток - 8,3%; 95% ДИ: 5,3–13,1) (χ^2 =46,46; p<0,001). Эти результаты подтверждают значимость смешанного типа кровоснабжения как признака, типичного для злокачественных опухолей (табл. 2).

 $Puc.\ 2.\$ Гиперваскулярный характер кровотока в опухоли: A - фиброаденома МЖ; Б - рак МЖ.

Характеристика типов васкуляризации опухолей молочной железы

Тип васкуляризации	Аваскулярный	Гиповаскулярный	Гиперваскулярный
Злокачественные образования (n=36)	2 (6,6%	13(34,2%;	21 (59,2%;
	ДИ: 2,8–14,5)	ДИ: 24,5–45,4)	ДИ: 48,0-69,6)
Доброкачественные образования (n=96)	34 (35,4%;	48(50,0%;	14 (14,6%;
	ДИ: 29,0-42,1)	ДИ: 42,9–56,6)	ДИ: 10,7–20,5)
p-value	<0,001	0,021	<0,001

Статистический анализ показал достоверные различия между злокачественными и доброкачественными новообразованиями по всем трём типам васкуляризации: итоговая оценка по критерию хи-квадрат составила $\chi^2 = 59,48$ при р < 0,001, коэффициент сопряжённости C = 0,51, что указывает на выраженную связь между типом кровотока и гистологическим диагнозом.

Анализируя распределение типов локализации

кровоснабжения в опухолевых образованиях молочной железы по данным ЦДК, выявлены следующие особенности: интранодулярный и перинодулярный типы кровоснабжения наблюдались с одинаковой частотой как при злокачественных, так и при доброкачественных образованиях (рис.3). Значимых статистических различий между этими группами по данным параметрам не выявлено (p=0,29; p=0,41) (табл. 3).

Таблица 2

Рис. 3. Перинодулярный характер кровотока в опухоли: А - фиброаденома МЖ; Б - рак МЖ.

Таблица 3

Локализация кровотока в опухолях молочной железы в зависимости от гистологического строения

Локализация кровотока	Интранодулярный	Перинодулярный	Смешанный	Отсутствие кровотока
Злокачественные образования (n=36)	10 (27,6%;	10 (27,6%;	14 (38,2%;	2 (6,6%;
	ДИ: 18,8–38,6)	ДИ: 18,8–38,6)	ДИ: 28,1–49,4)	ДИ: 2,8–14,5)
Доброкачественные образования (n=96)	33 (34,4%;	22 (22,9%;	8 (8,3%;	33 (34,4%;
	ДИ: 28,1-41,1)	ДИ: 17,6–29,2)	ДИ: 5,3-13,1)	ДИ: 28,1-41,1)
p-value	0,29	0,41	<0,001	<0,001

Статистически значимые различия между доброкачественными и злокачественными новообразованиями установлены по признакам смешанного типа сосудистой архитектуры и отсутствия кровотока (р < 0,001).

Общая взаимосвязь между типом кровоснабжения и гистологическим диагнозом оценена по критерию хи-квадрат: $\chi^2 = 46,46$, р < 0,001, коэффициент сопряжённости C = 0,44, что указывает на умеренную степень связи.

Согласно нашему исследованию, при оценке эффективности ультразвукового В-режима и ЦДК в дифференциальной диагностике опухолей молочной железы были получены следующие показатели: чувствительность - 77,6%; специфичность - 51,7%; точность - 58,8%; прогностическая ценность положительного результата - 37,8%; прогностическая ценность отрицательного результата - 86,0%.

По данным зарубежных авторов, использование ЦДК в составе мультипараметрического УЗ-исследования не оказывает значительного влияния на итоговую категорию BI-RADS при оценке патологического очага. Так, повышенная васкуляризация выявляется лишь у 57–64 % злокачественных образований [10]. Мультицентровое проспективное исследование показало, что чувствительность и специфичность В-режима составляют 97,6 % и 38,3 % соответственно. При сочетании В-режима с ЦДК эти показатели увеличиваются незначительно: чувствительность – до 97,9 %, специфичность – до 41,5 % [11].

ВЫВОДЫ

Таким образом, применение цветового допплеровского картирования, с оценкой васкуляризации, повышает диагностическую эффективность ультразвукового исследования при злокачественных опухолях молочных желез.

ЛИТЕРАТУРА

- Сабирджанова З. Р., Джанклич С. М. Динамика показателей рака молочной железы в Узбекистане // Вопросы онкологии. – 2022. – Т. 68. – №.3. – С. 171-172.
- 2. Cao W. et al. Comparative study of cancer profiles between 2020 and 2022 using global cancer statis-

- tics (GLOBOCAN) // Journal of the National Cancer Center. 2024.
- Chaudhary PK, Larson NB, Alizad A, Fatemi M. Quantitative microvessel orientation biomarkers derived from contrast free ultrasound imaging for cancer diagnosis // Sci Rep. – 2025. – V.8. – №.15(1) – P. 24500.
- Levy L, Suissa M, Chiche JF, Teman G, Martin B. BIRADS ultrasonography // Eur J Radiol. – 2007. – V. 61.– №.2. – P. 202-211.
- Liu Y, Zhu H, Yuan J, Wu G. A nomogram for predicting breast cancer based on hematologic and ultrasound parameters // Am J Transl Res. 2023. V. 15. №.15(9) P.5602-5612.
- 6. Mehta TS, Raza S, Baum JK. Use of Doppler ultrasound in the evaluation of breast carcinoma // Semin Ultrasound CT MR. 2000. V.21. №.4. P.297-307.
- 7. Park AY, Seo BK, Han MR. Breast Ultrasound Microvascular Imaging and Radiogenomics // Korean J Radiol. 2021. V.22. № 5. P.677-687.
- Rix A, Piepenbrock M, Flege B, von Stillfried S, Koczera P, Opacic T, Simons N, Boor P, Thoröe-Boveleth S, Deckers R, May JN, Lammers T, Schmitz G, Stickeler E, Kiessling F. Effects of contrast-enhanced ultrasound treatment on neoadjuvant chemotherapy in breast cancer // Theranostics. – 2021. – V. 21. –№.11(19). – P.9557-9570.
- Zeng H, Hou Y, Zhou X, Lang L, Luo H, Sun Y, Wan X, Yuan T, Wang R, Liu Y, Tang R, Cheng S, Xu M, Liu M. Cancer-associated fibroblasts facilitate premetastatic niche formation through lncRNA SNHG5-mediated angiogenesis and vascular permeability in breast cancer // Theranostics. – 2022. – V. 17.–№.12(17). – P.7351-7370.
- Zhang W., Xiao X., Xu X., Liang M., Wu H., Ruan J., Luo B. Non-Mass Breast on Ultrasound: Feature Exploration and Multimode Ultrasonic Diagnosis // Ultrasound Med Biol. 2018. V. 44. № 8. P.1703–1711.
- 11. Zhu Y. et al. Quantitative analysis of superb microvascular imaging for monitoring tumor response to chemoradiotherapy in locally advanced cervical cancer // Front. Oncol. 2023. V. 4. № 12. P. 107473.
